Inductive Learning
DTG-SSOD: Dense Teacher Guidance for Semi-Supervised Object Detection
The Mean-Teacher (MT) scheme is widely adopted in semi-supervised object detection (SSOD). In MT, the sparse pseudo labels, offered by the final predictions of the teacher (e.g., after Non Maximum Suppression (NMS) post-processing), are adopted for the dense supervision for the student via hand-crafted label assignment. However, the "sparse-to-dense" paradigm complicates the pipeline of SSOD, and simultaneously neglects the powerful direct, dense teacher supervision. In this paper, we attempt to directly leverage the dense guidance of teacher to supervise student training, i.e., the "dense-to-dense" paradigm. Specifically, we propose the Inverse NMS Clustering (INC) and Rank Matching (RM) to instantiate the dense supervision, without the widely used, conventional sparse pseudo labels.
Appendix A Performance on real-world based instances
We further evaluate SGBS+EAS on nine real-world based instance sets from [15]. Each instance set consists of 20 instances that have similar characteristics (i.e., they have been sampled from the same underlying distribution). The instance sets differ significantly in terms of several structural properties, for example, the number of customers n and their position (e.g., clustered vs. random positions). A more detailed description of instance sets can be found in [15]. One major advantage of neural combinatorial optimization approaches over traditional handcrafted optimization methods is their ability to quickly learn customized heuristics for new problem settings.
Long-Tailed Object Detection Pre-training: Dynamic Rebalancing Contrastive Learning with Dual Reconstruction Chen-Long Duan, Yong Li
Pre-training plays a vital role in various vision tasks, such as object recognition and detection. Commonly used pre-training methods, which typically rely on randomized approaches like uniform or Gaussian distributions to initialize model parameters, often fall short when confronted with long-tailed distributions, especially in detection tasks. This is largely due to extreme data imbalance and the issue of simplicity bias. In this paper, we introduce a novel pre-training framework for object detection, called Dynamic Rebalancing Contrastive Learning with Dual Reconstruction (2DRCL). Our method builds on a Holistic-Local Contrastive Learning mechanism, which aligns pre-training with object detection by capturing both global contextual semantics and detailed local patterns. To tackle the imbalance inherent in long-tailed data, we design a dynamic rebalancing strategy that adjusts the sampling of underrepresented instances throughout the pre-training process, ensuring better representation of tail classes. Moreover, Dual Reconstruction addresses simplicity bias by enforcing a reconstruction task aligned with the self-consistency principle, specifically benefiting underrepresented tail classes. Experiments on COCO and LVIS v1.0 datasets demonstrate the effectiveness of our method, particularly in improving the mAP/AP scores for tail classes.
EEGPT: Pretrained Transformer for Universal and Reliable Representation of EEG Signals
Electroencephalography (EEG) is crucial for recording brain activity, with applications in medicine, neuroscience, and brain-computer interfaces (BCI). However, challenges such as low signal-to-noise ratio (SNR), high inter-subject variability, and channel mismatch complicate the extraction of robust, universal EEG representations. We propose EEGPT, a novel 10-million-parameter pretrained transformer model designed for universal EEG feature extraction. In EEGPT, a mask-based dual self-supervised learning method for efficient feature extraction is designed. Compared to other mask-based self-supervised learning methods, EEGPT introduces spatio-temporal representation alignment. This involves constructing a self-supervised task based on EEG representations that possess high SNR and rich semantic information, rather than on raw signals. Consequently, this approach mitigates the issue of poor feature quality typically extracted from low SNR signals. Additionally, EEGPT's hierarchical structure processes spatial and temporal information separately, reducing computational complexity while increasing flexibility and adaptability for BCI applications. By training on a large mixed multi-task EEG dataset, we fully exploit EEGPT's capabilities.
Semi-Supervised Partial Label Learning via Confidence-Rated Margin Maximization
Partial label learning assumes inaccurate supervision where each training example is associated with a set of candidate labels, among which only one is valid. In many real-world scenarios, however, it is costly and time-consuming to assign candidate label sets to all the training examples. To circumvent this difficulty, the problem of semi-supervised partial label learning is investigated in this paper, where unlabeled data is utilized to facilitate model induction along with partial label training examples. Specifically, label propagation is adopted to instantiate the labeling confidence of partial label examples. After that, maximum margin formulation is introduced to jointly enable the induction of predictive model and the estimation of labeling confidence over unlabeled data. The derived formulation enforces confidence-rated margin maximization and confidence manifold preservation over partial label examples and unlabeled data. We show that the predictive model and labeling confidence can be solved via alternating optimization which admits QP solutions in either alternating step. Extensive experiments on synthetic as well as real-world data sets clearly validate the effectiveness of the proposed semi-supervised partial label learning approach.
Xin Wen 1 Yilun Chen 3 Jiangmiao Pang
Severe data imbalance naturally exists among web-scale vision-language datasets. Despite this, we find CLIP pre-trained thereupon exhibits notable robustness to the data imbalance compared to supervised learning, and demonstrates significant effectiveness in learning generalizable representations. With an aim to investigate the reasons behind this finding, we conduct controlled experiments to study various underlying factors, and reveal that CLIP's pretext task forms a dynamic classification problem wherein only a subset of classes is present in training. This isolates the bias from dominant classes and implicitly balances the learning signal. Furthermore, the robustness and discriminability of CLIP improve with more descriptive language supervision, larger data scale, and broader open-world concepts, which are inaccessible to supervised learning. Our study not only uncovers the mechanisms behind CLIP's generalizability beyond data imbalance but also provides transferable insights for the research community. The findings are validated in both supervised and self-supervised learning, enabling models trained on imbalanced data to achieve CLIP-level performance on diverse recognition tasks.
Towards Interpretable Natural Language Understanding with Explanations as Latent Variables Wangchunshu Zhou 1
Recently generating natural language explanations has shown very promising results in not only offering interpretable explanations but also providing additional information and supervision for prediction. However, existing approaches usually require a large set of human annotated explanations for training while collecting a large set of explanations is not only time consuming but also expensive. In this paper, we develop a general framework for interpretable natural language understanding that requires only a small set of human annotated explanations for training. Our framework treats natural language explanations as latent variables that model the underlying reasoning process of a neural model. We develop a variational EM framework for optimization where an explanation generation module and an explanation-augmented prediction module are alternatively optimized and mutually enhance each other. Moreover, we further propose an explanationbased self-training method under this framework for semi-supervised learning. It alternates between assigning pseudo-labels to unlabeled data and generating new explanations to iteratively improve each other.
Evaluating Graph Generative Models with Contrastively Learned Features
A wide range of models have been proposed for Graph Generative Models, necessitating effective methods to evaluate their quality. So far, most techniques use either traditional metrics based on subgraph counting, or the representations of randomly initialized Graph Neural Networks (GNNs). We propose using representations from contrastively trained GNNs, rather than random GNNs, and show this gives more reliable evaluation metrics. Neither traditional approaches nor GNN-based approaches dominate the other, however: we give examples of graphs that each approach is unable to distinguish. We demonstrate that Graph Substructure Networks (GSNs), which in a way combine both approaches, are better at distinguishing the distances between graph datasets. The code used for this project is available in: https://github.com/hamed1375/
Credal Self-Supervised Learning
Self-training is an effective approach to semi-supervised learning. The key idea is to let the learner itself iteratively generate "pseudo-supervision" for unlabeled instances based on its current hypothesis. In combination with consistency regularization, pseudo-labeling has shown promising performance in various domains, for example in computer vision. To account for the hypothetical nature of the pseudolabels, these are commonly provided in the form of probability distributions. Still, one may argue that even a probability distribution represents an excessive level of informedness, as it suggests that the learner precisely knows the ground-truth conditional probabilities. In our approach, we therefore allow the learner to label instances in the form of credal sets, that is, sets of (candidate) probability distributions. Thanks to this increased expressiveness, the learner is able to represent uncertainty and a lack of knowledge in a more flexible and more faithful manner. To learn from weakly labeled data of that kind, we leverage methods that have recently been proposed in the realm of so-called superset learning. In an exhaustive empirical evaluation, we compare our methodology to state-of-the-art self-supervision approaches, showing competitive to superior performance especially in low-label scenarios incorporating a high degree of uncertainty.